Semester II Major Practical I - Invertebrate Zoology & Chordate Zoology Course Code: ZC20P1 (Conducted during Semester I & II)

No. of Hours/ Week	No. of Credits	Total Hours	Marks
2 + 2	2	60	100

Objectives

1. To impart practical knowledge on morphology and anatomy of invertebrates and chordates.

2. To reinforce the basic laboratory skills including microscopy, dissection and observation of animal diversity.

	course outcomes							
СО	Upon completion of this course the students will be able to:	PSO addressed	CL					
CO - 1	identify the systematic position of selected invertebrates and	PSO - 1	R					
	chordates through observation of live and preserved specimens.							
CO - 2	describe the external morphology and biological significance of	PSO - 4	U					
	invertebrates and chordates.							
CO - 3	apply technical and creative skills through teamwork.	PSO - 3	Ар					
CO - 4	analyse the different taxonomic groups based on anatomy and	PSO - 2	An					
	structural arrangements.							

Course Outcomes

Teaching plan with Modules

Total Hours 30 (Incl. Demonstration, Observation & Test)

Units	Mo	dules	Topics	Ho urs	Learning Outcome/ CO Addressed	Pedagogy	Assessment
Ι	Inv	ertebr	ate Zoology (30 Hrs.)	u15	CO Addressed		
	1	Obset	rvation of live mecium – Hay culture.	4	Identify the <i>Paramecium</i> (CO-1, 3)	Demonstration & Observation	
	2 Observation of spicules – Sponge.		4	Identify spicules of sponges (CO-1, 3)	Demonstration & Observation	Continuous Performance	
	3	Moun m gl Mosq m	nting: Cockroach – outh parts, salivary and apparatus, trachea; uito & Honeybee – outh parts n - appendages	6	Dissect out and mount themouth parts, salivary gland and trachea of Cockroach on a slide and focus under microscope (CO-2, 3, 4, 5)	Demonstration & Observation	based assessment.
	4		ction: Cockroach - stive system & Nervous m.	6	Dissect and display the Digestive system and Nervous system of Cockroach (CO-2, 3, 4, 5)	Demonstration & Observation	Internal Assessment.
	5		ping of given avertebrates as per their stematic position.	2	Display the Grouping of given Invertebrates as per their systematic position.	Discussion	

6	Taxonomic study of insects upto class giving key identification, selecting any 5 locally available common examples and recording them. Spotters: Amoeba, Euglena,	2	Display the Taxonomic study of any 5 insects. Identify the specimens/	Discussion Observation &	
	Spongilla,Spongegemmule,Obelia,Coral(Fungia),Liverfluke,Tapeworm,Ascaris (MaleandFemale),Nereis,Leech,Penaeus,Oryctesrhinoceros,Pila,Lamellidens,Pinctada,Sepia,Octopus,Chiton,Starfish,Starfish,SeaCucumber.Larval forms:Cercaria,Trochophore,Nauplius,Zoea,Bipinnaria.	6	slides/ models and explains the structure/ function/ biological importance (CO-1, 5)	Discussion	

Course Instructors Dr.S. Mary Mettilda Bai Dr.A. Punitha Head of the Department Dr. S. Mary Mettilda Bai

Major Core II

B.Sc. Zoology

Semester Name of the Course Course code

: Chordate Zoology : ZC2021

: II

No. of hours/wee	K No. of credits	Total number of hours	Marks		
4	4	60	100		

Learning Objectives

1. To impart knowledge on the systematic position, structure, functional organization, adaptation and the economic importance of chordates.

2. To develop real time skills on identification of major groups of chordates to gain employment in academic and research institutions.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	identify the systematic position and describe the biological significance of chordates.	PSO - 1	R
CO - 2	recognize different chordates based on their salient features.	PSO - 1	U
CO - 3	compare the morphology and anatomy of selected chordates.	PSO - 3	An
CO - 4	assess the structural, physiological, ecological and behavioural adaptations pertaining to their mode of life.	PSO - 2	E
CO - 5	design experiments to relate chordates with their environment.	PSO - 2	С
CO - 6	disseminate knowledge on chordates to excel in research and entrepreneurship initiatives.	PSO - 4	Ap

Course Outcomes

Teaching Plan with Modules

Total Hours: 60 (Incl. Test)

Unit		ection	Description	Ho	ours	Learning Outcome & CO addressed	Pedagogy	Assessment
Ι	Prochordata (12 Hrs)							
	1	General characters of chordates and classification up to classes with names of examples, Prochordata:		3	char clas cho: proo 1,4) Des	cribe the	PPT, Video PPT, Video	MCQ, Class test, Assignment: Class notes, Flow chart, mind map
	2	Diges Excre	nal features stive system etory system	4	inte	ernal and rnal features of phioxus. (CO-		Formative
	3	biolog the fo	nal features and gical significance of lowing: <i>Ascidian</i> , loglossus, <i>Salpa</i> .	3	exte and sign	cuss on the ernal features biological hificance chordates. (CO-	PPT, Video	Assessment I Quiz I

	4	Agnatha: <i>Petromyzon</i> –	2	Explain the	PPT, Video	
	-	Externalmorphology. Ammocoeteslarva.	2	external features and biological significance of	111, video	Class note Submission
				Agnatha. (CO-1,2)		
II	Pi	sces (12 Hrs)				•
	1	Pisces: General characters	2	List the general	Interactive	
		and classification up to sub		characters and	session,	Short test
		classes with names of the		classification of	PPT, Video	
	-	examples.	2	Pisces. (CO-1,4)		Mind map
	2	Type study: Scoliodon-	2	State the general characters of	PPT, Video	Objective
		external characters, placoid scales.		Scoliodon. (CO-		test
		scales.		1,3)		Formative
	3	Digestive system,		Describe the	Interactive	Assessment
		respiratory system	4	physiology of the	session,	Ι
		Circulatory system		different systems	PPT, Video	Quiz I
		Nervous system		of shark. (CO-1,2)		Class note
		Receptor organs, urino-				Submission
		genital system.				Buomission
	4	Accessory respiratory	4	Explain respiration	PPT	
	4	organs in fishes	4	and migration of fishes. (CO-1,3)		
		Migration of fishes Lung fishes - Dipnoi.		Tisties. (CO-1,5)		
III	A	mphibia&Reptilia(12 Hrs)				
		Amphibia: General		List the general	PPT	Classifier
		characters and classification		characters and		Class test,
	1	up to orders with names of	2	classification of		MCQ,
		the examples only.		amphibian. (CO-1,4)		meg,
	2	Type study: Frog – External	3	Recall the	PPT	Assignment,
		characters		characteristics of		Formative
		Endoskeleton: Skull,		frog. (CO-1,2)		Assessment
		typical vertebra, atlas,				I (1,2,4),
	<u> </u>	girdles and limbs. Biological significance of		Discuss the		Quiz I
	3	Axolotl larva, <i>Ichthyophis</i>	2	biological	Video, PPT	Formative
	5	Parental care in Amphibia.	2	significance and	v 1000, 111	Assessment
		r		parental care in		II (3,5),
				axolotl larva and		Quiz II
				ichthyophis. (CO-3)		
		Reptilia: General characters		Outline the general		
	4	and classification up to	_	characters and		Class note
		orders with names of the	2	classification of	Lecture, PPT	Submission
		examples only.		reptiles. (CO-1,4)		

		Type study: Calotas	3	Explains external	Lecture, PPT	
	5	Type study: <i>Calotes</i> – External characters,	3	characters of Calotes		
	5			and functions of		
		Circulatory system				
		Excretory system.		internal organs,		
		Identification and study of		Identify poisonous		
		few poisonous snakes in		snakes. (CO-2)		
		India - first aid for snake				
		bite and anti-venom.				
IV		ves (12 Hrs)	1	T T T	D 1 ' 1	
	1	Aves: General characters	1	List the general	Probing and	Assignment:
		and classification up to sub		characters and	interaction,	Class notes,
		classes with names of the		classification of	Video lecture	Flow chart,
		examples.		birds. (CO-1,4)		mind map
	2	Type study: Columba livia -	3	Explain the	Observation of	Open book
		external characters,		external characters	pigeon – PPT,	test,
		exoskeleton		and importance of	Video	,
		flight muscles.		flight muscles.		MCQ,
				(CO-2)		Class test,
		Digestive system,		Discuss the	Interactive	Formative
	3	Respiratory system,		systems of	session,	
		Urino-genital system	4	Columba livia.	PPT, Video	Assessment
				(CO-2)		II
		Migration of birds,		Compare the Flight	PPT, Video	Quiz II
	4	Flight adaptation in birds,		adaptation in birds	Lecture	Class note
		Flightless birds (Ratitae):	4	and their migratory		Submission
		general characters and		behaviour. (CO-3)		500111551011
		examples.				
V	Μ	ammalia (12 Hrs)				
	1	Mammalia: General	2	Identify the key	PPT, Video	
		characters and classification		taxonomic	class using	Assignment:
		up to subclasses with names		characters and	Google class.	Class test,
		of the examples.		classify mammals.	-	Flow chart,
		-		(CO-1,4)		mind map
	2	Type study: Rabbit -	2	Describe the	Lecture, PPT,	
		external morphology		external	discussion.	
		Structure of skin, dentition.		morphology, skin		MCQ,
				and dentition of		
				rabbit. (CO-2)		
	3	Digestive system,	3	Explain the	PPT, Lecture	Formative
		Respiratory system		structure of	and interactive	Assessment
		Urinogenital system.		digestive,	session.	II
				respiratory and		Quiz II
		PPT, Video class using		urinogenital		
		Google class.		system of rabbit.		
				(CO-2)		Class note
				(00-2)		Class Hole

Course	4	Structure of heart Structure of brain.	2	Describe the structure of heart and brain. (CO-2)	PPT, Video class using Google class.	Submission
	5	Egg laying mammals- Pouched mammals Adaptations of aquatic mammals.	3	Compare egg laying and pouched mammals. (CO-3)	Lecture, PPT.	

instructors Dr. S. PrakashShoba Dr. Arockia Glory

Head of the Department

Dr. F.BriscaRenuga

Semester Name of the Course Course code : II : Chordate Zoology : ZC20P2

Major Practical II

No. of hours/weekNo. of creditsTotal number of hoursMarks223050

Learning Objectives

1. To recognize and describe the morphology and anatomy of the chordates.

2. To create interest in chordate biodiversity through animal album and bird Watcher's diary.

Course Outcome								
СО	Upon completion of this course the students will be able to :	PSO addressed	CL					
CO - 1	identify the Systematic position of selected chordate specimens.	PSO - 2	R					
CO - 2	describe the external morphology and biological significance of chordate specimens.	PSO - 1	U					
CO - 3	acquire cognitive, technical and creative skills through team work.	PSO - 2	Ap					
CO - 4	analyse the anatomy and structural arrangements in selected chordate animals.	PSO - 3	An					

Course Outcome

Teaching Plan with Modules

Total Hours: 30 (Incl. Test)

Section	Description		Learning outcome & CO addressed	Pedagogy	Assessment
1	Shark: Mounting of	2	Mount placoid scales.	Practical	Pre
	Placoid, Cycloid and Ctenoidscales.		(CO-4)		assessment
2	Fish: Digestive system.	2	Identify the parts of digestive system. (CO-4)	Practical	Performance assessment
3	Frog: Arterial system	2	Recall the parts of	Demonstrati	Model
	andUrinogenital system.		arterial and	on – virtual	Practical
			Urinogenital system. (CO-4)	lab	Examination
4	Frog: Brain	2	Identify the parts of		Observation
			frog brain. (CO-4)		Note
5	Reptiles: Key for	2	Recollect the key	Charts	
	Identification of		points. (CO-3)		Identification
	poisonous and non- poisonous snakes.				of chordates
6	Pigeon: Identification of	6	Identify different	Virtual lab	Album
	feathers, Digestive		types of feathers and		
	system, Respiratory		parts of internal		Bird
	system.		organs. (CO-4)		watcher's
7	Grouping of given	2	Recall the	Observation	diary
	chordate as per their		classification of		
	systematic position.		chordates. (CO-1)		
8	Amphioxus,	2	Identify and explain	Observation	
	Balanoglossus,		the biological	of museum	

Course	9	Ascidian, Petromyzon, Ammocoetes larva, Narcine, Hippocampus, Anguilla Rhacophorus, Axolotl larva, Ichthyophis,	2	significance.(CO-2)	Specimens	
		Salamander, Chamaeleon, <i>Draco</i> , <i>Chelone</i> , Cobra				
	10	Wood pecker, Pelican, Penguin, Pangolin, Kangaroo, Bat, Loris, Whale	2			
	11	Endoskeleton of Frog: Typical vertebra, atlas, pectoral girdle, pelvic girdle, forelimb skeleton and hind limb skeleton.	2			
	12	Submission of an "Animal Album" containing photographs or paper cuttings of the locally available chordates of different taxa with brief writes up.	-	Familiarize the animals and documentation. (CO- 2)	Field visit	
	13	Maintenance of campus Bird-watcher's Diary (group work).	-			
	14	Field visitto places of Zoological importance.	-			

instructors

Dr. S. PrakashShoba Dr. Arockia Glory **Head of the Department** Dr. F.BriscaRenuga

Semester: IINMEC IIName of the Course: Common Ailments and Simple RemediesCourse Code: ZNM202

No. of Hours/Week	Credits	Total No. of Hours	Marks
4	2	60	100

Learning Objectives

- 1. To create awareness on the changing life style and its impact on humanhealth.
- 2. To develop skills on disease management to form a healthysociety.

Course Outcomes

COs	Upon completion of this course the students will be able to:	PSO Addressed	CL
	enumerate the symptoms of common diseases.	PSO - 1	R
CO - 2	summarise common health problems like anaemia, heart diseases, diabetes, skin and dental problems and old age ailments.	PSO - 1	U
CO - 3	apply preventive strategies to develop healthy society.	PSO - 3	Ap
CO - 4	analyse the problems of changing life style and its impact on human health.	PSO - 3	An
CO - 5	evaluate the simple remedies for common ailments.	PSO - 3	Ε

				0	rs: 60 (In	ncl. Test)		
Unit	Sec	ction	Topics	E	Iours	Learning outcome	Pedagogy	Assessment
Ι	(12	Hrs)		T	-			1
	1	Ana	emia and types of anaemia.	2		narize the details anaemia. (CO-1).	Flipped learning	MCQ, Short test,
	2		od pressure-types, symptoms, ments and prevention.	4	-	the pros and blood pressure.	Blended learning	Mind Map, Formative Assessment I
	3		petes- causes, symptoms, nosis and treatment	3	Analys and diabete	e the diagnosis treatment of s. (CO-2).	Flipped learning	(1,2,3,4), Quiz I, Assignment
	4	sym	dice- causes, types, ptoms, treatment prevention.	3	and trea	e the symptoms atment of e. (CO-2, 3).	Blended learning	
II	(12	Hrs)		1				
	1		tal caries and Pyorrhoea- es, symptoms, treatment and ention	3	relat	orizes the words ed to the dental lems. (CO-3,4).	Flipped learning	Short test, Mind map,
	2		hoid- causes, types, symptoms treatment	4	-	ze the symptoms atment of typhoid. (CO-3,4).	PPT, Video	Objective test, Assignment,

Teaching Plan with Modules Total Hours: 60 (Incl. Test)

	3	Digestive disorders: Diarrhoea - causes and treatment	3	Summarize the digestive disorders. (CO-3,4).	PPT, Blended learning	Formative Assessment I (1),
	4	Chronic constipation- causes, prevention	2	Emphasizes the causes of chronic constipation. (CO-3,4).	PPT, Video	Formative Assessment II (2,3,4), Quiz II
III	(12	2 Hrs)				
	1	Common cold, cough-treatment	3	Identify the treatment of common cold. (CO-1).	Flipped learning	Short test, MCQ,
	2	Primary complex- causes and treatment	3	State the causes of primary complex. (CO-1,2).	PPT, Video	Objective test, Formative Assessment I
	3	Asthma- causes, symptoms and treatment	4	Points out the causes and symptoms of Asthma. (CO-3, 4).	Lecture, PPT	(1,2), Formative Assessment
	4	Headache - causes and types	2	Classify the types of headache. (CO-1,5).	Lecture, PPT	II (3,4)
IV	(12	2 Hrs)				
	1	Dengue fever - causes, types, symptoms and treatment.	4	summarize the treatment of dengue fever. (CO-4).	Lecture, PPT	Diagram test,
	2	Malaria - causes, types, symptoms and treatment	4	Recognize the symptoms of malaria. (CO-4).	Lecture, Video	MCQ, Formative Assessment I
	3	Filariasis (Elephantiasis) - causes, types, symptoms and treatment	4	Explores the causes and symptoms of Elephantiasis. (CO-4).	Lecture, PPT, You tube links	(1,2,3)
V	(12	Hrs)				Short test,
	1	Aging- old age related ailments, loss of memory, osteoporosis, Parkinson's disease, Alzheimer's disease.	4	Summarize old age related ailments. (CO-5).	Lecture, Group discussion, PPT	Quiz, Assignment, Formative Assessment I
	2	Arthritis- causes, types, symptoms and treatments.	4	Interrelate various diseases. (CO-5).	Lecture, PPT,Video tutorial	(1) Formative Assessment
	3	Fomentation	4	Point out the importance of fomentation. (CO-5).	Lecture, PPT	II (2,3)

Course instructors Dr. A.ShylaSuganthi Dr. Josephine Priyadharshini **Head of the Department** Dr. F.BriscaRenuga

Semester IV Major Core IV: Genetics Course Code: ZC2041

No. of Hours/ Week	No. of Credits	Total Hours	Marks
4	4	60	100

Objectives

1. To enable the students to understand the basic principles of inheritance and population genetics.

2. To enhance skills to interpret hereditary, mutation and syndromes and extend genetic counseling to society.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	recall the key concepts of heredity, population genetics, karyotyping and genetic counselling.	PSO - 1	R
CO - 2	describeMendelian, polygenic and cytoplasmic inheritance, chromosome mapping, nondisjunction, gene frequency and eugenics.	PSO - 1	U
CO - 3	apply the principles of heredity to real life situations.	PSO - 2	Ap
CO - 4	execute and analyze the results of genetic experimentation in animal and plant models.	PSO - 3	An
CO - 5	evaluate the genetic data of a population.	PSO - 4	E

Unit I

Unit II

Mendelian inheritance - Monohybrid and dihybrid - back cross and test cross. Complete, incomplete and codominance. Interactions of genes: Complementary genes – flower colour in sweet pea, Supplementary genes – inheritance of comb in fowl, Epistasis – inheritance of colour pattern in poultry and coat colour in mice, Lethal genes – sickle cell anemia. Polygenic inheritance - Skin colour in man, Multiple alleles: ABO blood group in man, Rh factor in man, coat colour in rabbit.

(12 hrs.)

Chromosome mapping and Syndromes: Linkage – types, groups and theories. Crossing over - mechanism, theories, cytological evidence - Stern's experiment and Tetrad analysis, significance. Chromosome map - two point and three point cross, construction of chromosome map.Sex determination in man and Drosophila.Nondisjunction - Primary and secondary nondisjunction in *Drosophila*. Syndromes in man: Turner's, Klinefelter's and Down syndrome.

Unit III

Cytoplasmic inheritance and Mutation: Cytoplasmic inheritance - Kappa particles in *Paramecium*, milk factor in mice, shell coiling in *Limnaea*. DNA as genetic material - Bacterial transformation, conjugation, F-factor and transduction. Mutation: Chromosomal mutation - changes in structure and number, aneuploidy and euploidy, Gene mutation - mutagens. DNA repair mechanisms.

Unit IV

Human chromosomes and genetic diseases: autosomes and allosomes – Karyotype and idiogram. Simple Mendelian traits in man. Twins - types, development and application. Inborn errors of metabolism - Phenylketonuria, Alkaptonuria, Albinism. Sex-linked genes and their inheritance - X-linked genes - Colour blindness and Haemophilia, Y-linked genes - holandric genes.

Unit V

Population genetics: Hardy Weinberg equilibrium – calculation of gene frequency – factors affecting gene frequency – selection, mutation, genetic drift and migration. Inbreeding, out breeding and heterosis.Eugenics, Euthenics and Euphenics.Pedigree analysis. Genetic prognosis - Genetic counselling.

Textbook

Meyyan, R. P. (2011). Genetics. Nagercoil: Saras Publications.

Reference Books

1. Verma, P.S. & Agarwal, V.K. (2009). *Genetics*, Revised ed. New Delhi: S. Chand & Co.

- Peter Snustad, D. & Michael J. Simmons (2010). *Principles of Genetics* (2nd ed.). USA: John Wiley and Sons.
- 3. Chatterjee, S. (2009). Genetics. New Delhi: APH Publishing Corporation.
- 4. Singh, B.D. (2008). Fundamentals of Genetics (4th ed.). Ludhiana: Kalyani Publishers.

(12 hrs.)

(12 hrs.)

(12 hrs.)

(12 hrs.)

17 b--- \

5. Gardner, Simmons &Snustad (2006). *Principles of Genetics* (8th ed.). USA: John Wiley & Sons.

6. Ahluwalia, K.B. (2009). *Genetics* (2nd ed.). New Delhi: New Age International.

Teaching Plan with Modules Total Hours 60 (Incl. Assignment & Test)

Units	Modules	Topics	Hou	rs Learning Outcome/ CO addressed	Pedagogy	Assessment
Ι	Mendelian	inheritance (12 Hrs.)				
		ybrid and dihybrid -		1 5	Lecture	
	back c	cross and test cross.		dihybridcross, back cross,		Class test 1 -
	Comple	ete, incomplete and	1	test cross, complete,		MCQ (Google
	codomi	nance.		incomplete and		forms)
				codominance.(CO-1,2,3)		
	2 Interact	tions of genes:	5	Demonstrate the principles of	Lecture,	Internal Test I
	Comple	ementary genes –		gene interactions.	PPT.	Quiz I
	flower	colour in sweet pea,		(CO-1,3,5)		
	Supplei	mentary genes –				Online assignment
	inherita	ince of comb in fowl,				
	Epistas	is – inheritance of				
	-	pattern in poultry				
		it colour in mice.				

	3	Lethal genes – sickle cell anemia. Polygenic inheritance - Skin colour in man.	2	illustratePolygenic inheritance. (CO-1,2,3)	Lecture, PPT, video, Mind map, Diagram	
	4	Multiple alleles: ABO blood group in man, Rh factor in man, coat colour in rabbit.	2		Lecture, PPT.	
II	Chi	comosome mapping and Syndi	·om	es (12 Hrs.)		
	_	Linkage – types, groups and theories. Crossing over - mechanism, theories, cytological evidence - Stern's experiment and Tetrad analysis, significance.	4		Lecture.	Internal TestI & Quiz I Class test 2 Assignment
	2	Chromosome map - two point and three point cross, construction of chromosome map.	3	Demonstrate chromosome map. (CO-1,2)	Lecture.	
	3	Sex determination in man and Drosophila.	2	in man and Drosophila. (CO-	Lecture, PPT, Mind map	
	4	Nondisjunction - Primary and secondary nondisjunction in <i>Drosophila</i> . Syndromes in man: Turner's, Klinefelter's and Down syndrome.		1 0	Lecture, PPT.	
III	Cyt	oplasmic inheritance and Mut	atio	n (12 Hrs.)	I	
		Cytoplasmic inheritance - Kappa particles in <i>Paramecium</i> , milk factor in mice, shell coiling in <i>Limnaea</i> .	4		Lecture.	Internal TestI & Quiz I (1,2) Internal Test II &QuizII (3,4)
	2	DNA as genetic material - Bacterial transformation, conjugation, F- factor and transduction.	3		Lecture, Interactive Class, video.	Class test - Open book test
	3	Mutation: Chromosomal mutation - changes in structure and number, aneuploidy and euploidy.	3		Lecture, PPT.	Assignment
	4	Gene mutation – mutagens. DNA repair mechanisms.	2	6	Lecture, PPT	
IV	Hu	man chromosomes and genetic	dis	eases (12 Hrs.)		

1	Autosomes and allosomes – Karyotype and idiogram.	2	Define autosomes,allosomes, karyotype and idiogram.(CO-1,2,4)	Lecture, Chart, Table PPT	Open book test Online Assignment
2	Simple Mendelian traits in man. Twins - types, development and application.	2	Interpret Simple Mendelian traits and explain the types of twins.(CO-1,2,5)	Lecture,	Internal TestII Quiz II Class test
3	Inborn errors of metabolism - Phenylketonuria, Alkaptonuria, Albinism.	5	Explicate inborn errors of metabolism. (CO-1,3,5)	Lecture, PPT,	

	 4 Sex-linked genes and their inheritance - X-linked genes - Colour blindness and Haemophilia, Y-linked genes - holandric genes. 	3	Narrate the inheritance of sex-linked genes. (CO-1,3)	Lecture, Video	Formative Assessment II (3,4)
V	 Population genetics (12 Hrs.) 1 Hardy Weinberg equilibrium calculation of gene frequency. 2 Factors affecting gene frequency – selection, mutation constitution drift and 		equilibrium and calculate gene frequency. (CO-1,4,5) Identify the factors affecting gene frequency.	Lecture, PPT Lecture, Video lesson,	Group Discussion Formative Assessment II
	 mutation, genetic drift and migration. 3 Inbreeding, out breeding and heterosis. Eugenics, Euthenics and Euphenics. 		(CO-1,2) Comprehendinbreeding, out breeding, heterosis, eugenics, euthenics and euphenics. (CO-1,2,4,5)		Quiz II Class test 4 Oral test
	4 Pedigree analysis. Genetic prognosis - Genetic counselling.		Demonstrate Pedigree analysis. Interpret genetic prognosis and Genetic counselling.(CO-1,3,4,5)	Lecture, Flow chart	

CourseInstructorsHead of theDepartment

Dr. A. Punitha

Dr. S. Mary MettildaBai

Dr. F. BriscaRenuga

Name of the course: Genetics, Biostatistics and Computer ApplicationsSub. Code: ZC20P2

No. of hours/week	No. of credits	Total number of hours	Marks		
2	2	30	100	1.	Тс

learn and practice the basic principles of inheritance in a firsthand manner.

2. To train the students learn and perform experiments, collect data, analyze the data, learn to interpret the data and draw conclusion from it.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	Demonstrate Mendelian genetic principles in a controlled experimental set up.	PSO - 2	R
CO - 2	Identify the own Blood group.	PSO - 3	Ар
CO - 3	Perform experiments with the model organism, Drosophila.	PSO - 3	An
CO - 4	Design experiments, collect, analyze, interpret the data statistically and draw conclusion.	PSO - 3	Ap
CO - 5	Use computing skill for typing text.	PSO - 3;	Ар
		PSO - 5	

Genetics

- 1. Observation of simple Mendelian traits in man.
- 2. Verification of monohybrid and dihybrid ratio using beads.
- 3. Observation of mutant forms of Drosophila.
- 4. Observation of polygenic inheritance (length of shell/ height of students)

5. Blood group identification.

Charts / Models / Bookplates: Syndromes - Klinefelter's, Turner's and Down's, Sex- linked inheritance - Colour blindness, Haemophilia, Hypertrichosis.

Teaching Plan with Modules Total Hours: 30 (Incl. Test)

Section	Description	Hou rs	Learning outcome	Pedagogy	Assessment
1	Observation of simple	2	Identify	Practical	Pre-
	Mendelian traits in man.		Mendelian		assessment.
			traits in man.		
2	Verification of monohybrid	4	Verify	Practical	
	and dihybrid ratio using		monohybrid		Performance-
	beads.		and dihybrid		based
			cross.		Assessment.
3	Observation of mutant forms	4	Culture	Demonstration	
	of Drosophila.		Drosophila		

	Observation of polyconia	2	and identify the mutant forms of <i>Drosophila</i> .	Practical	Self- assessment Model examinations
4	Observation of polygenic inheritance (length of shell/ height of students)	2	Recollect the key points associated with polygenic inheritance.	Practical	examinations
5	Blood group identification.	2	Identify different types of blood groups.	Practical	
9	Syndromes (Klinefelter's, syndrome, Turner's syndrome, Down syndrome)	2	Identify the characteristics of syndromes.	Charts	
10	Sex- linked inheritance (Colorblindness, Haemophilia, Hypertrichosis).	2	Identify sex- linked inheritance.	Charts	

Course instructors

Dr. A. Punitha Dr. F. BriscaRenuga Dr. J .VinoliyaJosphine Mary Head of the Department

Semester IV Major Elective II: (a) Clinical Laboratory Technology Course Code: ZC2042

No. of Hours/ Week	No. of Credits	Total Hours	Marks
4	3	60	100

Objectives

1. To impart knowledge on the laboratory techniques adopted in clinical laboratories.

2. To develop skills for gaining employability in hospitals and research laboratories.

Course outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	describe the laboratory principles applied in diagnosis of disease.	PSO - 1	R
CO - 2	classify the clinical specimens and use appropriate laboratory protocol.	PSO - 2	U
CO - 3	prepare reagents, handle instruments, perform clinical analysis and validate the results.	PSO - 3	Ар
CO - 4	develop skills necessary for higher studies or placement in clinical laboratories.	PSO - 4	An

Teaching Plan with Modules Total Hours: 60 (Incl. Test)

Unit		odules	Topics		ours	Learning Outcome/ CO addressed	Pedagogy	Assessment	
Ι	Ess 1 2	Safety m aid in th Steriliza	re-requisites of a Cli neasures and first e laboratory. tion – physical and l methods.	nica 2 4	Recal measure labora	ratory (12 Hrs) Il the Safety ures of the atory. (CO-2) oret the ization methods.	Xenograp hy, Mind map, PPT Androgog y, PPT	Short test, Open book test, MCQ Formative Assessment I (1, 2, 3,4) Quiz I	
	3	Molar an solution	ical waste	4	prepa reagr Expla biom	2) ne the rration of nts. (CO-3) ain the edical waste gement. (CO-2)	Lecture, PPT Lecture,Vi deo, PPT		
II	La	boratory	Instruments and th	eir a	pplica	tions: (12 Hrs)			
	1	Micros	cope, Balance.	2	-	ain the principle croscope. (CO-3)	Demonstr ation,	Short test, Open book	
	2	pH met	er, Colorimeter.	2	mech	nethe working anism of imeter. (CO-3)	Techobase d	test, MCQ	

	3	Autoanalyser, Centrifuge.	3	Recall the handling protocol of autoanalyser and centrifuge. (CO-3)	Lecture, PPT	Formative Assessment I (1, 2)
	4	Incubator, Water bath.	2	Differentiate the functions of Incubator and Water bath. (CO- 3)	Lecture, Video, PPT	Quiz I Formative Assessment
	5	Haemocytometer, Sahli'shaemoglobinometer.	3	Apply the methodologies to count RBCs and WBCs. (CO-3)	Lecture, Mind map, PPT	II (3, 4, 5) Quiz II
III	Cli	nical Haematology (12 Hrs)				
	1	Collection of blood - Venous and capillary, Blood grouping, Separation of plasma and serum.	3	Identify different blood groups, plasma and serum. (CO-3)	PPT, Video	Slip test, MCQ, Assignment Open book test
	2	Blood cell count – Total count and differential count, Haemoglobin estimation by Sahli's method, Erythrocyte sedimentation rate (ESR).	3	Apply Sahli's method to estimate haemoglobin. (CO-3)	PPT, Video, Flipped learning	Formative Assessment I (1, 2, 3, 4) Quiz I
	3	Analysis of blood glucose, serum creatinine, alkaline phosphatase, cholesterol.	3	Analyse different components of blood. (CO-3)	PPT, Video, Blended learning	Quiz I
	4	High density lipid (HDL) and low density lipid (LDL), Triglycerides.	3	Classify lipids. (CO- 3)	PPT, Video, Collaborat ive learning	
IV	Exa	amination of sputum and bo	dy fl	uids:(12 Hrs)		
	1	Collection, Physical, chemical examination of fluids.	4	Recall the collection and examination of fluids. (CO-1)	Chalk and board, lecture	Short test, Open book test, MCQ, online
	2	Microscopic examination of cerebrospinal fluid and sputum.	4	Outline the microscopic examination of cerebrospinal fluid and sputum. (CO-2)	PPT, Lecture	assignment Formative Assessment I
	3	Serous fluid - pleural, pericardial and peritoneal, Synovial fluid.	4	Compare the various serous fluid. (CO-4)	Flipped classroom, Group discussion	(1,2,3) Quiz I

V	Uri 1	ine and Stool Analysis: (12 H Urine – collection, composition, volume, colour and transparency.	(rs) 3	Explain the properties of Urine.(CO-2)	Lecture, Chalk and board	Short test, MCQ, Assignment Formative
	2	Analysis of urine for glucose, albumin, bilirubin, urobilinogen and ketone.	3	Analyse the various components of urine. (CO-4)	Lecture, PPT, experiential learning	Assessment II (1, 2, 3, 4, 5) Quiz II
	3	Microscopic examination for bacteria, organized and unorganized deposits and blood. Pregnancy test.	2	Identify the different bacteria and deposits of blood.(CO-3)	You tube videos, blended learning	Quiz II
	4	Stool - collection, types, microscopic examination -	2	Explain the collection and types of stool.(CO-2)	PPT, Video, Blended learning	
	5	identification of intestinal parasites using saline wet mount - faecal occult blood.	2	Analyse the intestinal parasites and identify them. (CO-4)	Comparativ e Chart, Discussion	

Course In-charge: Punitha Dr. X. Venci Candida

Dr. F. BriscaRenuga

Semester IV Major Practical II III & IV Semester Major Core & Electives Course Code: ZC20P2 (Conducted during III & IV Semester)

The of Hours, week	No. of Creatts	Total Hours	Marks
2+2	2	60	100

Objectives

1. To impart practical skills in selected fields of biology.

2. To develop skills to apply the principles of biological techniques.

Course outcomes

СО	Upon completion of this course the students will be	PSO	CL
	able to:	addressed	

Dr. C. Dr.

Head of the Department:

CO - 1	Identify biomolecules, cells, chromosomes, genetic disorders and animals.	PSO - 1	R
CO - 2	illustrate cells and its structure, biomolecules and theprinciples of biotechniques.	PSO - 2	U
CO - 3	handle analytical instruments and biological samples.	PSO - 3	Ap
CO - 4	analyse biochemical constituents, biological sequences and disorders.	PSO - 4	An

Genetics

- 1. Observation of simple Mendelian traits in man.
- 2. Verification of monohybrid and dihybrid ratio using beads.
- 3. Observation of mutant forms of Drosophila.
- 4. Observation of polygenic inheritance (length of shell/ height of students)
- 5. Blood group identification.

Charts / Models / Bookplates: Syndromes - Klinefelter's, Turner's and Down's, Sex- linked inheritance - Colour blindness, Haemophilia, Hypertrichosis.

Clinical Laboratory Technology

- 1. Collection of blood and separation of serum and plasma
- 2. Estimation of blood glucose using glucometer.
- 3. Routine examination of urine: Urine sugar determination by Benedict's method.
- 4. Protein by heat and acetic method, Urobilinogen and Ketone bodies.
- 5. Microscopic examination of urine.
- 6. Pregnancy test (kit method).

Spotters: Water bath, Balance, Autoanalyser, Incubator, Renal calculi, *Entamoebahistolytica, Enterobiusvermicularis*, Biomedical waste bags.

Modules		Topics	H ou rs	Learning Outcome/ CO addressed	Pedagog y	Assessment
1		on of blood and on of serum and	3	Experiential learning (CO-1)	Practical	Practical Assessment,
2	2 Estimation of blood glucose using glucometer.		3	Experiential learning .(CO-1)	Practical	Model exam, Summative
3	urine: U	examination of Jrine sugar nation by Benedict's	3	Experiential learning .(CO-1)	Practical	exam

Teaching Plan with Modules

4	Protein byheat and acetic method, Urobilinogen and Ketone bodies.	3	Experiential learning .(CO-2)	Practical
5	Microscopic examination of urine.	2	Experiential learning .(CO-2)	Practical
6	Pregnancy test (kit method).	3	Experiential learning . (CO-2)	Practical
7	Spotters: Water bath, Balance	3	Observe and identify. CO-2)	Observat ory learning
8	Autoanalyser, Incubator	2	Observe and identify .(CO-5)	Observat ory learning
9	Renal calculi	2	Observe and identify .(CO-5)	Observat ory learning
10	Entamoebahistolytica, Enterobiusvermicularis	3	Observe and identify . (CO-4)	Observat ory learning
11	Biomedical waste bags.	3	Observe and identify (CO-6)	Observat ory learning

Course In-charge Dr. C. Josephine Priyatharshini

Head of the Department Dr. F. BriscaRenuga

B.Sc. Zoology Teaching Plan 2019-'20

Semester: VIName of the Course: BiotechnologyCourse code: ZC1761

Major Core VIII

No. of hours/ week	No. of credits	Total number of hours	Marks
6	5	90	100

Learning Objectives

- 1. To learn the basic concepts of biotechnology and understand the various techniques pertaining to biotechnology.
- 2. To get employability in biotech industries.

Course Outcome

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	acquire knowledge of basic concepts of biotechnology and central	PSO - 3	U
	dogma.		
CO - 2	discuss the rDNA technology, DNA library, hybridoma technology,	PSO - 4	U
	animal cell and tissue culture and gene therapy.		
CO - 3	decide and apply appropriate tools and techniques in biotechnological	PSO - 6	Ap;
	manipulation.		An
CO - 4	explain the general principles of generating transgenic plants, animals	PSO - 6	Ap
	and application of microbes pharmaceutical products.		
CO - 5	undertake any responsibility as an individual and as a team in a	PSO - 8	Ap
	multidisciplinary environment for landing in a job.		

Teaching Plan with Modules Total Hours: 90 (Incl. Assignment & Test)

	Total Hours. 70 (mel. Assignment & Test)								
Unit	Mo	odules	Topics	Ho	urs	Learning outcome/	Pedagogy	Assessment	
						CO addressed			
Ι	Pla	nt and	Animal cell culture (18	8 Hrs	s.)				
	1	Introd	uction.	3	Expl	ain the different	Lecture,		
		Cultur	e media - cell culture		type	s of culture media,	Discussion,	MCQ,	
		techni	que.		their	ingredients and cell	Flow chart		
					cultu	re technique.		Formative	
					(CO	-2)		assessment I,	
	2	Establ	ishment of cell culture	3	Dem	onstrate primary,	Lecture,	Quiz I	
		– prim	ary and sub-culture -		Expl	ant and callus	PPT		
		Explai	nt culture, callus		cultu	ure. (CO-2)		Online	
		culture	2.					Assignment,	
	3	Somat	ic hybridization and	5	Disc	uss Somatic	Lecture,		
		micro-	-propagation.		hybr	idization and micro-	mind map,		
					prop	agation. (CO-3)	PPT		
	4	Cell li	nes - large scale	4	Iden	tify Cell lines and	Lecture,		

		culture of cell lines.		comprehend large scale	PPT	
		culture of cell lines.		culture of cell lines.	ILI I	
				(CO-2)		
	5	Organ culture - embryo	3	Differentiate and discuss	Lecture,	
	5	culture.	5	organ culture and embryo	video	
		culture.		culture. (CO-2)	video	
II	Tis	sue engineering, Transgenic a	nim		technology (1	8 Hrs)
	1	Artificial skin and cartilage.	4	Explain artificial skin	Group	
	1	Stem cells: characteristics,		and cartilage. Discuss	discussion,	Slip test
		types and applications.		characteristics, types and	PPT, Chalk	Assignment
		types and appreations.		applications. (CO-3)	and talk	(Quizizz)
	2	Transgenic animal	3	Outline transgenic animal	Lecture,	Formative
	2	technology: Transgenesis –	5	technology. (CO-4)	PPT,	assessment I
		methods of transgenesis,		technology. (CO-4)	Discussion	&
		_			Discussion	Quiz I (1)
		applications of transgenic animals.				Qui2 I (1)
	3	Hybridoma technology:	5	Identify the different	Lecture,	Formative
	5	Production of Hybridoma,	5	Identify the different	Flow chart,	assessment
		monoclonal antibodies:		steps involved in the production of	Video	II, Quiz 1I
		production and applications.		monoclonal antibodies.	video	(2,3,4)
		production and applications.		(CO-2)		(_,c, .)
	4	Bioreactors: stirred tank	6	Discuss the common	Lecture,	Online
		and air-lift bioreactor.		types of bioreactors.	Chalk and	Assignment
				(CO-3)	talk, Model	
III	Me	tabolite production, Bioremed	liati	on (18 Hrs.)		
	1	Ethanol (primary	5	Demonstrate the	Lecture,	MCQ
		metabolite), Penicillin		production of ethanol and	PPT, Flow	Short test,
		(secondary metabolite).		penicillin. (CO-5)	chart	Formative
		Immobilization of enzymes				assessment
		and their applications.				II,
	2	Biosensors – types and	4	Discuss biosensors and	Lecture,	Quiz II
		applications. Bacterial SCP		Comprehend SCP.	PPT, mind	
		and its applications		(CO-3)	map	Online
	3	Sewage and waste water	5	Narrate the steps	Lecture,	Assignment
	5	treatment. Bioremediation:	5	involved in	PPT, Flow	(Edmodo)
		Types, Degradation of		bioremediation. (CO-4)	chart	
		Xenobiotics (hydrocarbon,			Chart	
		pesticide). Super bug –				
		construction and application.				
	4	Biomining and bioleaching.	4	Discuss biomining and	Lecture,	
		Biocontrol – Bacillus		biocontrol. (CO-4)	PPT, mind	
		thuringiensis.		x /	map	
IV	Ge	netic Engineering (18 Hrs.)		1		
	1	Restriction enzymes, cloning	4	Explain the restriction	Chalk and	
		,	-			

		vectors: SV40, Ti plasmid.		enzymes and cloning	talk, PPT	
	2	Preparation of desired gene - Isolation of plasmid vector - insertion of desired gene into the vector - Introduction of rDNA into host cell – Screening and identification	6	vectors. (CO-1 , 2) Discuss the methods of rDNA technology. (CO-2)	Lecture, Video, Model	MCQ, Formative assessment I, Quiz I Online
	3	of cloned gene. DNA library. Genome editing – CRISP, Next Generation sequencing techniques. Molecular markers (RAPD & RFLP).	4	Recall the DNA library, Genome editing – CRISP, Next Generation sequencing techniques. (CO-3)	Lecture, video	Assignment
	4	Polymerase chain reaction. Southern blotting. DNA sequencing: Sanger's method.	4	Recognize Polymerase chain reaction - Southern blotting and DNA sequencing: Sangers's method. (CO-3)	Lecture, PPT, Video, Mind Map	
V	DN	A applications, Bioethics, Nat	note	echnology (18 Hrs)		
	1	Disease diagnosis – DNA probes, disease treatment – production of human insulin. Gene therapy – types and methods. SNP's for mutations.	4	Discuss DNA probes, production of human insulin and gene therapy. (CO-5)	Lecture, PPT, video	Slip test Assignment (Quizizz) Formative
	2	Finger printing and its application in forensic medicine. Human Genome Project.	4	Illustrate finger printing technology and human genome project. (CO-5)	Lecture	assessment I & Quiz I (1,2)
	3	Bioethics: Ethical implications of transgenic animals. Biosafety: Possible dangers of Genetically Engineered organisms (GEOs) and biohazards of rDNA technology.	6	Explain bioethics and biosafety. (CO-5)	Chalk and Talk	Formative assessment II, Quiz 1I (3,4) Online
	4	Nanotechnology: applications of nanotechnology in medicine, drug designing and cancer treatment.	4	Comprehend the applications of nanotechnology. (CO-5)	Lecture, PPT, video	Assignment
					ad of the Den	

Course instructors

Dr. A. Punitha Dr. S. Mary Mettilda Bai **Head of the Department** Dr. S. Mary Mettilda Bai

Semester	: VI	Major Core IX
Name of the Course	: Immunology and Microbio	logy
Course code	: ZC1762	

No. of hours/week	No. of credits	Total number of hours	Marks
6	5	90	100

Learning Objectives

1. To enable the students to become aware of the microbes around us and also to know about the processes involved in the elimination of invading microbes by the defense system of our body.

2. To provide proficiency in basic microbiological and immunological skills.

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO - 1	identify the major components of the immune system at organ and cellular level.	PSO - 1	R
CO - 2	discuss the types of immune response and mechanisms to eliminate antigens.	PSO - 1	U
CO - 3	culture and identify the microorganisms based on morphological and staining techniques.	PSO - 3	Ар
CO - 4	apply knowledge of microorganisms on common pathological diseases.	PSO - 5	R; Ap
CO - 5	develop skills to monitor and maintain food safety.	PSO - 4	Ap
CO - 6	design analytical and experimental tasks involving microbiology and immunology.	PSO - 3	Ap; An

Course Outcomes

Teaching Plan with Modules Total Hours: 90 ((Incl. Assignments & Test)

Unit	M	odules	Topics	He	ours	Learning Outcome/ CO addressed	Pedagogy	Assessment
Ι	In	nmunity	and Lymphoid organs (1	8 H	Irs.)			
		History	and scope of ology.	i		er the history of unology year wise. -1)	Lecture, PPT	Short test, online
	2		of immunity - Innate, d, passive and active.	3		inguish the types of unity. (CO-1)	Lecture	Assignment (MCQ),
	3	lympho	y and Secondary bid organs - Thymus, harrow, Bursa of us.	4 Relat Seco		te Primary and ondary organs and their tions.(CO-1)	Flipped classroom	Formative assessment I- 1,2,3,4,5

	4	Spleen, Lymph node, Mucosa Associated Lymphoid Tissue.	4	Categorize Primary and Secondary organs and its functions. (CO-1)	Lecture, PPT	Quiz I
	5	Lymphoid and myeloid lineage. Cells of immune system (T cells and B cells, macrophages)		Construct lymphoid and myeloid lineage and summarize T cells, B cells and macrophages. (CO-1)	Video lesson, Lecture	
II	Aı	ntigen and antibodies (18 Hrs.)				
	1	Haemopoietic stem cells and haemopoiesis.	4	Identify Haemopoietic stem cells. (CO-2)	Lecture	MCQ,
	2	Antigen. Immunogens, hapten and adjuvants.	4	Describe antigens, Immunogens, hapten and adjuvants. (CO-2)	Blended classroom	online Assignment (Antigens and
	3	Immunoglobulin: Immunoglobulin classes, structure and functions of IgG.	5	Sketch the structure of Immunoglobulin. (CO-2)	Lecture, you tube video	Immunogens), Formative assessment I –
	4	Antigen – Antibody reactions. Secondary antibody, purification of antibody using protein A/G.	5	Explain antigen – antibody reactions and purification of antibody. (CO-2)	Lecture, PPT	1,2,3,4 Quiz I
III	In	mune Response (18 Hrs.)			l	
	1	Immune Response: Primary and secondary immune response.	3	Categorize immune response. (CO-2)	Lecture, PPT	Short test,
	2	Immunity to bacterial infections - Humoral immune response, Cell-mediated immune response.	5	Enumerate humoral response. Illustrate cell mediated response. (CO-2)	Lecture, video	Open book test, Formative assessment I –
	3	Hypersensitivity: Allergens and types of hypersensitivity.	4	Summarize Allergens and types of hypersensitivity. (CO-2)	Lecture, PPT	1,2,3 Formative
	4	Tumour immunology. Autoimmunity - Rheumatoid arthritis.	4	Identify the causes, symptoms and treatment of Rheumatoid arthritis. (CO-2)	Lecture, PPT	assessment II– 4,5 Quiz I, II
	5	Vaccines and Immunization schedule.	2	Indicate Immunization schedule. (CO-2)	Jigsaw	
IV	Μ	icrobiology (18 Hrs.)				
	1	History and scope of microbiology. Whittaker's classification of microbes with	4	Enumerate the history of microbiology. (CO-3)	Lecture, Chalk and Talk	Mind map,
		two examples.				Assignment

	2 3	Bacteria: structure of <i>E. coli</i> , bacterial growth curve. Culture media. Culture techniques - batch culture and	35	Explain the structure of <i>E. coli.</i> (CO-3) Differentiate and apply culture media. Describe	Lecture, Chalk and Talk Lecture/ PPT	(Structure of TMV and T ₄ Bacteriophage), Formative	
	4	continuous culture (chemostat and turbidostat). Virus: structure (TMV and T ₄ phage) – reproduction of phages (lysogenic and lytic).	4	different culture technique. (CO-3) Illustrate the structure of Virus and its reproduction. (CO-3)	Lecture/ Video	assessment II 1,2,3,4,5 Quiz II	
	5	Synthetic Biology	2	Outline Synthetic Biology. (CO-3)	Group discussion		
V	Fo	od Microbiology, Industrial Mic	rob	viology and Medical Microbiology (18 Hrs.)			
	1	Food Microbiology - Food poisoning, food spoilage and preservation.	4	Explain food poisoning and spoilage. (CO-5)	Lecture, Chalk and Talk	Slip test, Formative	
	2	Industrial microbiology: Wine and vinegar production	4	Interpret Wine and vinegar production in the industries. (CO-5)	Lecture, Chalk and Talk	assessment II - 1,2,3,4,5	
	3	Medical microbiology: Bacterial diseases (Tuberculosis, Gonorrhea, Streptococcal dermal infection).	4	List bacterial diseases. (CO-4)	Poster, Flash cards	Quiz II MCQ through Quizziz	
	4	Viral diseases (AIDS, Chicken pox, Hepatitis B, Rabies).	4	Discuss viral diseases. (CO-4)	Lecture, PPT		
	5	Fungal diseases (Mycotoxicosis and Aspergillosis).	2	Categorize fungal diseases. (CO-4)	PPT		

Course instructor

Dr. X. Venci Candida

Head of the Department Dr. S. Mary Mettilda Bai

Semester : VI Name of the Course: Evolutionary Biology Course Code : ZC1763

No. of hours/week	No. of credits	Total number of hours	Marks
5	5	75	100

Learning Objectives

- 1. To discern the evolutionary significance of animals and origin of species.
- 2. To provide methods of investigating animal evolution, construction of phylogenetic trees and to get job in educational institutions and paleontological departments.

Course Outcomes

CO	Upon completion of this course the students will be able	PSO	CL
	to:	addressed	
CO - 1	explain the concepts of evolution, origin of life, geological	PSO - 1	U
	time scale and evidences of evolution.		
CO - 2	explain the theories of evolution, mechanism of speciation and	PSO - 3	R
	extinction of organism.		
CO - 3	apply Hardy-Weinberg equilibrium in population genetics.	PSO -6	Ap; E
CO - 4	outline the major transitions in evolution, from the origin of	PSO - 6	Ар
	life to hominid evolution.		
CO - 5	perform, analyse and report experimental observations in	PSO - 2	Ap; An
	evolutionary biology.		

Teaching Plan with Modules

Total Hours 60 (Incl. Assignments & Test)

Unit	M	odules Topics	H	ours	Learning outcome/ CO addressed	Pedagogy	Assessment
Ι	Co	oncepts and Evidences of Evolut	tion	(15 H			
	1 Concepts and Evidences of Evolution: Origin of life - Theories and experiments.		4	Theo	ain Origin of life - ories and priments. (CO-1).	Lecture, Flipped learning	Short test, MCQ,
	2	Evidences insupport of evolution – morphology and comparative anatomy, embryology,	7 Comparing evolution – and compa		paring the process of ution – morphology comparative omy, embryology.	Lecture, Chalk and talk, Blended learning	Formative assessment I (1,2,3,4) Quiz I
	3	Physiology and biochemistry, palaeontology.	2	evol and	paring the process of ution – Physiology biochemistry, eontology. (CO-1).	Lecture , Chalk and talk	Online assignment

	4	Geological time scale.	3	Summarize Geological time scale. (CO-1)	Lecture , Chalk and talk	
	Tł	neories of Evolution (15 Hrs.)	1		11	
	1	Theories of Evolution: Lamarckism, Neo- Lamarckism.	3	Explain the theory of Lamarckism, Neo- Lamarckism. (CO-2).	Lecture, Chalk and talk, PPT	Short test, MCQ
	2	Darwinism, Neo- Darwinism.	3	Explain the theory of Darwinism, Neo- Darwinism. (CO-2).	Lecture, Chalk and talk, Video	Formative assessment I (1,2,3,4,5).
п	3	Mutation theory of De Vries. Modern synthetic theory.	4	Describing the Mutation theory of De Vries and Modern synthetic theory. (CO-2, 3).	Lecture, Chalk and talk	Quiz I
	4	Variation – types, sources – mutation, combination, hybridization, genetic drift, Founder's principle, polyploidy.	3	Explain different types and sources of variation. (CO-2).	Lecture, Chalk and talk, Cooperative teaching	
	5	Natural selection – Stabilizing, directional and disruptive selection.	2	Summarizing different types of natural selection. (CO-2).	Lecture, PPT	
III	Ise	olating mechanisms, Species Co	ncep	ot and Speciation (15 Hrs.)	·	
	1	Isolating mechanisms: Types, origin and evolution of isolating mechanisms, role of isolation in speciation.	3	Summarize the types, origin and evolution of isolating mechanisms, role of isolation in speciation. (CO-2).	Lecture, Chalk and talk, Flipped learning	Short test, MCQ, Formative assessment I
	2	Species, sibling species, sub species, demes.	3	Explain the species, sibling species, sub species, demes. (CO-2).	Lecture, Chalk and talk	(1,2,3) Quiz I Mind map
	3	Species concept - morphological, genetic and biological.	2	Summarize morphological, genetic and biological Species concept. (CO-2).	Lecture, PPT, Peer group teaching	Formative assessment II (4,5)
	4	Speciation - Phyletic and true speciation, mechanism of speciation.	3	Describe phyletic and true speciation, mechanism of speciation. (CO-2).	Lecture, Chalk and talk, Video	Quiz II
	5	Patterns of speciation – allopatric, sympatric, quantum and parapatric.	4	Compare the different patterns of speciation. (CO-2).	Lecture, PPT, Brain storming	
IV	Ph	ylogenetic analysis (15 Hrs.)	L	1	11	

	1	Phylogenetic analysis: Tools for sequence alignment–BLAST, FASTA.	4	Explain the various tools for sequence alignment–BLAST, FASTA. (CO-4).	Lecture, PPT, Flipped learning, E- learning	Short test, MCQ, Formative assessment II
	2	Methods of phylogenetic analysis - phenetic and cladistic; phylogenetic trees.	4	Summarize the methods of phylogenetic analysis - phenetic and cladistic; phylogenetic trees. (CO-4).	Lecture, Chalk and talk	Quiz II Mind map
	3	Methods for determining evolutionary trees – maximum parsimony, distance and maximum likelihood.	7	Evaluating the methods for determining evolutionary trees – maximum parsimony, distance and maximum likelihood. (CO-4).	Lecture, Chalk and talk, Peer group teaching	
V	Tı	rends in Evolution, Mimicry and	l Co	louration (15 Hrs.)	•	
	1	Trends in Evolution: Modes of evolution– micro, macro and megaevolution.	3	Describe the modes of evolution–micro, macro and megaevolution. (CO- 5)	Lecture , Chalk and talk	Formative assessment II (1,2,3,4)
	2	Heterochrony - Paedomorphosis and Peramorphosis.	1	Define and explain Paedomorphosis and Peramorphosis. (CO-2)	Lecture, PPT, Flipped learning	
	3	Rate of evolution. Human Evolution – organic, cultural and future evolution.	6	Evaluating the Rate of evolution. Human Evolution – organic, cultural and future evolution. (CO-5)	Lecture, Chalk and talk, PPT, Video	
	4	Mimicry and colouration.	2	Describe the Mimicry and colouration. (CO-5)	Lecture, Chalk and talk, Models	
	5	Extinction - types, causes and significance.	3	Summarize the types, causes and significance of extinction. (CO-5).	Lecture, Chalk and talk	

Course instructor

Dr. S. Prakash Shoba

Head of the Department Dr. S. Mary Mettilda Bai

Semester	: VI
Name of the Course	: Applied Zoology
Course code	: ZC1764

Elective IV (a)

No. of hours/week	No. of credits	Total number of hours	Marks
5	5	75	100

Learning Objectives

1. To deepen the knowledge of students in general and applied areas of Zoology.

2. To provide employment and job opportunities in the public, private and government sector Course Outcomes

	Course Outcomes								
СО	Upon completion of this course the students will be able	PSO	CL						
CO	to:	addressed	CL						
CO - 1	apply the knowledge of animal husbandry in economic development.	PSO - 5	U						
CO - 2	identify the kinds of bees and the methods of bee keeping.	PSO - 8	U						
CO - 3	rear silkworms, harvest and market the cocoons.	PSO - 9	Ар						
CO - 4	apply skills and experience about the management of poultry and Dairy farming.	PSO - 9	Ар						
CO - 5	culture of economically important finfish and shell fishes.	PSO - 8	Ар						

Teaching Plan with Modules Total Hours: 75 (Incl. Test)

Unit	Modules		Topics	He	ours	Learning Outcome / CO addressed	Pedagogy	Assessment
Ι	A	piculture	e (15 Hrs)					
	1	Scope,	Classification and	3	Cate	gorize the kinds of	Lecture,	MCQ,
		kinds o	f bees, Bees and		bees	and their features.	Chalk and	
		their so	ciety.		(CO	-1, 2)	Talk	Slip test,
	2		cle of Apis indica –	4		tify the various stages	Lecture,	
			honey bees -		of be	ees. (CO-2)	Mind map	Mind Map,
			ship between plants					
		and bee						Online
	3		ls of bee keeping	2	-	ain the methods of	Lecture,	Assignmen
			ive and modern).			keeping. (CO-3)	Video	t (Honey
	4	-	Bee products: honey,	2		lyse the various honey	PPT,	bee
		bee war	x, bee venom.		bee j	products. (CO-3)	Group	products),
						Discussion		
	5 Lac culture – scope – lac		4	Expl	ain the various stages	Lecture,	Formative	
	insect Laccifer lacca and its			of la	c insect.	Video.	Assessment	
	life cycle – processing of lac			(CO	-2, 3)			
		-lac pr	oducts and					Quiz I
		importa	ance.					

II	Se	riculture (15 Hrs)					
	1	Scope – Silk Road - CSB - Moriculture: varieties of mulberry.	2	Knowledge on the methods in Moriculture (CO-1, 2)	e.	Lecture, Chalk and Talk	Open book test,
	2	Methods of propagation, harvesting of leaves.	2	Remember the methods propagation and leaf harvesting. (CO-2, 3)	s of	PPT, Lecture.	Objective test,
	3	Common species of Silkworm, Life cycle of mulberry silkworm.	4	Compare the different stages of Silkworm. (CO-2, 3)		Lecture, Video.	Formative
	4	Diseases of silkworm: pebrine, grasserie, sotto diseases, muscardine – pest of silkworm: uzifly.	3	Identify the different diseases of silkworm. (CO-3)		Lecture, Visit	Assessment I Quiz I
	5	Rearing of silkworm – mounting – spinning - harvesting of cocoons – silk reeling and marketing.	4	Explain the process of reeling and Marketing. (CO-3)	silk	Lecture, Video	
III	Po	ultry Keeping (15 Hrs)					
	1	Scope, commercial layers and broilers.	3	Characterize the layer and broilers. (CO-1, 2		Lecture, PPT	Slip test, MCQ,
	2	Poultry housing, types of poultry houses.	2	Design the poultry houses. (CO-4)		Lecture, PPT	Objective test,
	3	Management of chick, growers, layers and broilers.	4	Explain the managem of chick, growers, lay and broilers. (CO-4)		Lecture, blended classroom,	Quiz I, Formative Assessment I (1,2,3)
	4	Debeaking, Sexing in chicks, Nutritive value of egg.	3	Critique the nutritive value of egg. (CO-3)		Lecture, Chalk and talk	Short test, Formative
	5	Diseases of poultry – Ranikhet, Fowl pox, Coryza, Coccidiosis, Polyneuritis – vaccination.	3	Analyse the diseases poultry. (CO-3)	of	Lecture, Group Discussion, PPT	Assessment II (4, 5), Quiz II
IV	Da	hiry Farming (15 Hrs)					
	1	Scope, Breeds of Dairy animals, Establishment of a typical Dairy farm.	3	Knowledge on dairy animals and construct the dairy farm. (CO-1 , 3)		Lecture, alk and talk	Diagram test, Short test,
	2	Management of cow (New born, calf, Heifer, milking cow)	3	Understand the management of cows. (CO-3)	Le	cture, video	Open book test
	3	Diseases (Mastitis, Rinder Pest, FMD).	2	Categorize the diseases of dairy		Lecture, PPT	MCQ
	1			animals. (CO-3)			Formative

	4	Nutritive value of milk- Dairy products (Standard milk, skimmed milk, toned milk and fermented milk - curd, ghee, cheese). Pasteurization.	4	Formulate dairy products and describe pasteurization. (CO-4 , 5)	Lecture, PPT, Group Discussion.	Assessment II Quiz II
	5	Leather industry – scope – processing of skin.	3	Analyse the process involved in leather preparation. (CO-1, 3)	Lecture, video	
	Int	egrated Farming (15 Hrs)				
	1	Definition and Scope, Agri-based fish farming, paddy cum fish culture, horticulture-cum fish culture.	4	Knowledge on integrated fish farming. (CO-1, 3)	Lecture, Chalk and Talk, PPT	Short test, Online
v	2	Integrated bee keeping – Live-stock fish farming, Duck cum fish culture.	3	Understand the integrated bee keeping. (CO-1)	Lecture, Video	Assignment (Integrated fish
	3	Fish cum poultry farming, fish cum dairy farming, goat cum fish integration.	4	Compare the different types of fish farming. (CO-2)	Lecture PPT	culture), Formative Assessment
	4	Fish cum pig farming – multi-trophic aquaculture- Livestock –poultry – fish - Horticulture.	4	Describe the multi- trophic aquaculture. (CO-3, 5)	Lecture, Group Discussion, Video	II, Quiz II

Course instructor

Dr. C. Anitha

Head of the Department Dr. S. Mary Mettilda Bai

Semester: V & VIMajor Practical VIName of the Course: Ecology and Toxicology & Evolutionary BiologyCourse code: ZC17P6

No. of hours/week	No. of hours/week No. of credits		Marks	
4	2	60	100	

Learning Objectives

1. To investigate the relationship between the organisms and their environment.

2. To know the phylogenetic relations of the animal phyla and their traits in understanding the evolutionary relationship.

Course Outcomes

CO	Upon completion of this course the students will be able to:	PSO	CL
		addressed	
CO - 1	analyse the water quality of an aquatic ecosystem.	PSO - 3	Ap ; An
CO - 2	examine and identify the zooplanktons.	PSO - 1	Ар
CO - 3	assess the evolutionary concepts through experiments.	PSO - 4	Е
CO - 4	study the natural ecosystem and report.	PSO - 7	C; Ap

Teaching plan with Module

Total Hours 60 (Incl. Demonstration, Observation & Test)

Units	Mo	dule	Торіс	He	ours	Learning Outcome/ CO addressed	Pedagogy	Assessment
Ι	Eco	logy a	and Toxicology (30 Hrs.)	V se	emest	er		
	1	Dete	ection of transparency of	3	Mea	sure transparency of	Experiment	
		wate	er by Secchi disc.		wate	er. (CO-1)		
	2	Esti	mation of oxygen	3	Esti	mate oxygen content in	Experiment	Continuous
		cont	ent of water samples.		wate	er samples. (CO-1)		Performance
	3	Esti	mation of salinity of	3	Esti	mate salinity of water	Experiment	based
		wate	er samples.		sam	ples. (CO-1)		assessment.
	4	Μοι	inting of freshwater and	3	Iden	tify planktons and	Demonstration	
		mar	ine planktons		prep	are temporary slides.	& Observation	
					(CO	-2)		
	5		lysis of producers and	3	Iden	tify the producers and	Field visit	_
		cons	sumers in grass land.		cons	sumers in an ecosystem.		Internal
					(CO	,		Assessment.
	6	Dete	ermination of 48 hours	3		ermine LC_{50} of a	Experiment	
		LC ₅	of a pesticide.		pest	icide. (CO-1)		

	7	Study of natural ecosystem and field report of the visit (compulsory).	3	Document the field trip. (CO-4)	Field Trip Observation of	
	8	Museum Specimens: Secchi disc, Mutualism (Hermit crab and Sea anemone), Commensalism (Echeneis and Shark), Parasitism (Sacculina on Crab), Cyclomorphosis (Daphnia).	9	Identify and Explain Secchi disc, Mutualism, Commensalism, Parasitism, Cyclomorphosis. (CO-3)	the spotters and specimen	
	Evo	olutionary Biology (30 Hrs.) VI	Ser	nester		
	1	Serial homology in prawn.	2	Identify Serial homology in prawn. (CO-4)	Practical	
	2	Prodigality of nature - Frog.	2	Identify the prodigality of nature – Frog and explain the concept of over- production. (CO-4)	Practical	
	3	Mutant forms in Drosophila.	4	Culture <i>Drosophila</i> and identify Mutant forms in Drosophila. (CO-4)	Demonstration	Peer-
	4	Observation of variation in finger prints.	2	Identify the various patterns of finger prints and prove the theory "variation is universal." (CO-4)	Practical	assessment.
п	5	Variations in the markings of Umbonium shells.	2	Observe the markings of Umbonium shells and prove the theory "No two individuals are alike." (CO- 4)	Practical	Performance- based Assessment.
	6	Demonstration of Natural selection on gene frequency using beads.	2	Analyse the impact of Natural selection on gene frequency using beads. (CO-4)	Demonstration	Self- assessment
	7	Demonstration of Genetic drift on gene frequency using beads.	2	Test the role of Genetic drift on gene frequency using beads. (CO-4)	Practical	Model examinations
	8	Demonstration of DNA sequence alignment by BLAST and construction of cladogram.	4	Demonstrate DNA sequence alignment by BLAST and construction of cladogram. (CO-4)	Demonstration	
	9	Homology- fore limbs of vertebrates, Analogy - wings of animals.	2	Identify Homology and Analogy in animals and prove organic evolution. (CO-4).	Charts	

11	Darwin finches, Industrial melanism, Ancon sheep,	2	Prove the concepts of adaptive radiation, natural selection and mutation and explain Darwinism and DeVrism of Evolution. (CO-4)	Charts	
12	Monarch and Viceroy butterfly, Stick insect, Krait and Lycodon.	3	Identify mimicry and colouration and explain their role in evolution. (CO-4)	Charts	

Course Instructor

Dr. S. Prakash Shoba

Head of the Department Dr. S. Mary Mettilda Bai

Semester: VIMajor Practical VIIName of the Course: Biotechnology & Immunology and MicrobiologyCourse code: ZC17P7

No. of hours/week	No. of credits	Total number of hours	Marks
4	2	60	100

Learning Objectives

- 1. To familiarize the students with various immunological and microbiological techniques.
- 2. To implement experimental protocols and adapt them to carry out using biotechnological techniques.

Course Outcomes

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	isolate genomic DNA.	PSO - 3	Ар
CO - 2	perform quantitative, immunological and microbiological analysis.	PSO - 6	Ар
CO - 3	differentiate Gram positive and negative bacteria.	PSO - 3	An; Ap
CO - 4	identify lymphoid organs in a vertebrate model.	PSO - 4	R
CO - 5	develop skills needed for future research in	PSO - 6	Ар
	immunology, microbiology and biotechnology.		

Teaching plan with Modules Total Hours 60 (Incl. Demonstration, Observation & Test)

Units	Mo	dules	Торіс	Ho	ours	Learning outcome/	Pedagogy	Assessment
						CO addressed		
Ι	Bio	techno	logy (30 Hrs.)					
	1.	Isolat	ion of genomic DNA.	4	Isola	ate DNA from	Practical	Performance
					biol	ogical samples.		based
	2.	Estim	ation of DNA by	4	Esti	mate the quantity of	Practical	assessment
		Diphe	enylamine (DPA) Method.		DN.	A.		abbebblitent
	3.	Estim	ation of BOD in Sewage.	2	Esti	mate and analyse the	Practical	
					oxy	gen content in sewage.		
	4.	Estim	ation of COD in sewage.	2	Ana	lyse the CO_2 content	Practical	
					in se	ewage.		
	5.	Immo	bilization of enzyme	2	Rec	all the techniques and	Practical	
		(Amy	lase/ Invertase/ Protease)		Imn	nobilize enzyme.		
		using	sodium alginate -			J		
		Demo	onstration.					
	6.	Polyn	nerase Chain Reaction –	2	Rec	all DNA	Practical	

		Demonstration.		amplification.		Internal assessment
	7.	Production of Hybridoma and Monoclonal antibodies – Flow chart.	2	Recall hybridoma technique.	Practical	Model
	8	Isolation of B and T lymphocytes using kits.	4	Isolate B and T lymphocytes	Practical	
	9.	Model/ Charts / Photo pBR 322, λ phage, SV40, Recombinant DNA, Electroporation unit, Southern blotting, RFLP, organ culture (Plasma clot method), Knockout mice, Dolly, Sanger's method of DNA sequencing,	4	Identify different vectors and its role in hybridization techniques. Recall different molecular techniques.	Observation	
	10	Biosensor, Callus, Explant, Micropropagation, Fermenter, rDNA, Human genome sequence, Penicillin, Biogas production.	4	Identify and explains the biotechnological importance of the Model/ Charts / Photo	Observation	
II		munology and Microbiology (30 H		r	1	1
	1	Dissection of Lymphoid organs of Rat - (Virtual demonstration).	2	Identify immune organs and its role. (CO-4, 5)	Demonstration through virtual lab	Pre- assessment.
	2	Cleaning and sterilization of glass wares and Preparation of culture media for microbes.	4	Point out steps in sterilization and preparation of media. (CO- 2, 5)	Practical	Performance- based Assessment.
	3	Serial dilution technique.	2	Recall serial dilution. (CO-2, 5)	Practical	
	4	Examination of bacterial motility by Hanging drop technique.	2	Devise the hanging drop technique. (CO-2, 3, 5)	Practical	Self- assessment, Model
	5	Staining of bacteria – simple staining and gram staining.	4	Identify bacilli and coccus, positive and negative bacteria. (CO-2, 3, 5)	Practical	examination
	6	Radial immuno diffusion	4	Recall antigen antibody reactions. (CO-2, 5)	Practical	
	7	<i>Escherichia coli</i> , TMV, T ₄ phage.	2	Relate the structure of bacteria and virus. (CO-3, 5)	Charts	
	8	Bacterial growth curve, Chemostat.	2	Recall the growth curve and chemostat. (CO-3, 5)]	

9	Autoclave, Hot air oven, Inoculation loop.	4	Apply the culture technique of bacteria. (CO-3, 5)	
10	Haemocytometer, Stage and Ocular micrometer.	4	Recall the application of haemocytometer and ocular micrometer. (CO-5)	Demonstration

Course instructor

Dr. F. Brisca Renuga Dr. A. Punitha Dr. X. Venci Candida **Head of the Department** Dr. S. Mary Mettilda Bai